排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准: (1)执行时间 (2)存储空间 (3)编程工作 对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。 主要排序法有: 一、冒泡(Bubble)排序——相邻交换 二、选择排序——每次最小/大排在相应的位置 三、插入排序——将下一个插入已排好的序列中 四、壳(Shell)排序——缩小增量 五、归并排序 六、快速排序 七、堆排序 八、拓扑排序 九、锦标赛排序 十、基数排序 一、冒泡(Bubble)排序
原理:将序列划分为无序和有序区,不断通过交换较大元素至无序区尾完成排序。
要点:设计交换判断条件,提前结束以排好序的序列循环。
二、选择排序
原理:将序列划分为无序和有序区,寻找无序区中的最小值和无序区的首元素交换,有序区扩大一个,循环最终完成全部排序。
三、插入排序
原理:将数组分为无序区和有序区两个区,然后不断将无序区的第一个元素按大小顺序插入到有序区中去,最终将所有无序区元素都移动到有序区完成排序。
要点:设立哨兵,作为临时存储和判断数组边界之用。
四、壳(Shell)排序——希尔排序——缩小增量排序
原理:先将序列按增量划分为元素个数相同的若干组,使用直接插入排序法进行排序,然后不断缩小增量直至为1,最后使用直接插入排序完成排序。
要点:增量的选择以及排序最终以1为增量进行排序结束。
五、归并排序
原理:将原序列划分为有序的两个序列,然后利用归并算法进行合并,合并之后即为有序序列。
要点:归并、分治
六、快速排序
原理:不断寻找一个序列的中点,然后对中点左右的序列递归的进行排序,直至全部序列排序完成,使用了分治的思想。
要点:递归、分治
七、堆排序
原理:利用大根堆或小根堆思想,首先建立堆,然后将堆首与堆尾交换,堆尾之后为有序区。要点:建堆、交换、调整堆
最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。 思想: (1)令i=l,并令temp= kl ; (2)计算i的左孩子j=2i+1; (3)若j<=n-1,则转(4),否则转(6); (4)比较kj和kj+1,若kj+1>kj,则令j=j+1,否则j不变; (5)比较temp和kj,若kj>temp,则令ki等于kj,并令i=j,j=2i+1,并转(3),否则转(6) (6)令ki等于temp,结束。
八、拓扑排序 例 :学生选修课排课先后顺序 拓扑排序:把有向图中各顶点按照它们相互之间的优先关系排列成一个线性序列的过程。 方法: 在有向图中选一个没有前驱的顶点且输出 从图中删除该顶点和所有以它为尾的弧 重复上述两步,直至全部顶点均已输出(拓扑排序成功),或者当图中不存在无前驱的顶点(图中有回路)为止。
九、锦标赛排序 锦标赛排序的算法思想与体育比赛类似。 首先将n个数据元素两两分组,分别按关键字进行比较,得到n/2个比较的优胜者(关键字小者),作为第一步比较的结果保留下来, 然后对这n/2个数据元素再两两分组,分别按关键字进行比较,…,如此重复,直到选出一个关键字最小的数据元素为止。
十、基数排序 基数排序又被称为桶排序。与前面介绍的几种排序方法相比较,基数排序和它们有明显的不同。 前面所介绍的排序方法都是建立在对数据元素关键字进行比较的基础上,所以可以称为基于比较的排序; 而基数排序首先将待排序数据元素依次“分配”到不同的桶里,然后再把各桶中的数据元素“收集”到一起。 通过使用对多关键字进行排序的这种“分配”和“收集”的方法,基数排序实现了对多关键字进行排序。 ——————————————————————————————————————— 例: 每张扑克牌有两个“关键字”:花色和面值。其大小顺序为: 花色:§<¨<©<ª 面值:2<3<……<K<A 扑克牌的大小先根据花色比较,花色大的牌比花色小的牌大;花色一样的牌再根据面值比较大小。所以,将扑克牌按从小到大的次序排列,可得到以下序列: §2,…,§A,¨2,…,¨A,©2,…,©A,ª2,…,ªA 这种排序相当于有两个关键字的排序,一般有两种方法实现。 其一:可以先按花色分成四堆(每一堆牌具有相同的花色),然后在每一堆牌里再按面值从小到大的次序排序,最后把已排好序的四堆牌按花色从小到大次序叠放在一起就得到排序的结果。 其二:可以先按面值排序分成十三堆(每一堆牌具有相同的面值),然后将这十三堆牌按面值从小到大的顺序叠放在一起,再把整副牌按顺序根据花色再分成四堆(每一堆牌已按面值从小到大的顺序有序),最后将这四堆牌按花色从小到大合在一起就得到排序的结果。 ——————————————————————————————————————— 实现方法: 最高位优先(Most Significant Digit first)法,简称MSD法:先按k1排序分组,同一组中记录,关键码k1相等,再对各组按k2排序分成子组,之后,对后面的关键码继续这样的排序分组,直到按最次位关键码kd对各子组排序后。再将各组连接起来,便得到一个有序序列。 最低位优先(Least Significant Digit first)法,简称LSD法:先从kd开始排序,再对kd-1进行排序,依次重复,直到对k1排序后便得到一个有序序列。