在很多实际工程问题中,我们的优化目标不止一个,而是对多个目标函数求一个综合最优解。例如在物流配送问题中,不仅要求配送路径最短,还可能需要参与运输车辆最少等。
对于多目标优化问题,传统方法是将原问题通过加权方式变换为单目标优化问题,进而求得最优解。该方法具有两大问题:
遗传算法具有多点多方向搜索的特征,在一次搜索中可以得到多个Pareto最优解,因此更适合求解多目标优化问题。
而当前用于求解多目标优化问题的遗传算法一般有两种思路:
NSGA-II(nondominated sorting genetic algorithm II)是2002年Deb教授提出的NSGA的改进型,这个算法主要解决了第一版NSGA的三个痛点:
针对这三个问题,在NSGA-II中,Deb提出了快速非支配排序算子,引入了保存精英策略,并用“拥挤距离”(crowding distance)替代了共享(sharing)。
在介绍NSGA-II的整体流程之前,我们需要先了解快速非支配排序和拥挤距离的定义。
下图表示了解之间的支配和强支配关系:
下图表示了一个最小化问题解集中的Pareto最优解和Pareto弱最优解:
快速非支配排序就是将解集分解为不同次序的Pareto前沿的过程。
它可以描述为:
参数:
返回:
在NSGA II中,为了衡量在同一个前沿中各个解质量的优劣,作者为每个解分配了一个拥挤距离。其背后的思想是让求得的Pareto最优解在objective space中尽量分散。也就有更大可能让解在Pareto最优前沿上均匀分布。
参数:
返回:
根据快速非支配排序和拥挤距离计算的结果,对族群中的个体进行排序:
在每个迭代步的最后,将父代与子代合为一个族群,依照比较操作对合并后族群中的个体进行排序,然后从中选取数量等同于父代规模的优秀子代,这就是NSGA-II算法中的精英保存策略。
参数:
返回:
这里选用ZDT3函数作为测试函数,函数可表达为:
下图给出了该函数在Decision Space和Objective Space中的对应:
其pareto最优解在Objective Space中如下图红点所示:
将结果可视化:
得到:
可以看到NSGA-II算法得到的Pareto最优前沿质量很高:最优解均匀分布在不连续前沿的各个线段上;同时在最优前沿以外没有个体存在。