伦敦奥运会火热进行中,让我们来看个打靶的问题:一个射击运动员打靶,靶一共有10环,求连开10枪打中90环的可能行有多少种?分析:这是一个典型递归求解问题。假设第10枪打x环,则将问题转换为剩下9枪打90-x环的可能有多少种,x的取值范围为[0, 10],根据加法原理,则:10枪打90环的可能 = 第10枪打0环,剩下9枪打90环的可能 + 第10枪打1环,剩下9枪打89环的可能 + 第10枪打2环,剩下9枪打88环的可能 + 第10枪打3环,剩下9枪打87环的可能 + 第10枪打4环,剩下9枪打86环的可能 + 第10枪打5环,剩下9枪打85环的可能 + 第10枪打6环,剩下9枪打84环的可能 + 第10枪打7环,剩下9枪打83环的可能 + 第10枪打8环,剩下9枪打82环的可能+ 第10枪打9环,剩下9枪打81环的可能 + 第10枪打10环,剩下9枪打80环的可能。
递归的停止条件为:1. 若环数小于0 或者 剩下的环数大于剩下的枪数乘以10(即剩下每枪打10环用不玩所剩环数),则该递归路径不记入可能情况。2. 若不满足条件1,且所剩枪数为1,则该递归路径记为1中可能情况。
求x的p次幂本是简单的问题,可以将x次乘p次就可以了,这里我们当然不是要讨论这种计算方法,这里讨论的是怎样高效计算。有没有可能减少做乘法的次数呢?让我们来做一个分析,考虑x的6次幂的情况:x * x * x * x * x * x = (x * x * x) * (x * x * x)等式前面部分需进行6次乘法,后半部分需计算(x * x * x) ,然后乘以上次计算的值即可,共4次乘法。通过上述分析可知,求x的p次幂可以通过递归折半的方法来减少乘法的次数,循着这个思考,实现就不太困难了。
计算2的20次幂总共进行5次乘法就足够了,而原始的算法需要20次,那么这种算法究竟需要多少次乘法呢?由于该算法根本思想是折半递归,类似于2分查找,所以乘法的次数为lgp取天花板值这个数量级的(lgp表示以2为底p的对数)。整型int最多表示2的32次幂,因此最多节省24次乘法,对于现代的计算机,这似乎不是特别重要,但是在以下情况下该算法具有重要价值:1. 对于需要高频率计算幂的情况;2. 对于大数高精度计算的情况,如需计算2的10000次幂。当然了,这也是对递归算法和2分法的巧妙应用,学习其思想吧。
和这个问题类似的问题还有:1. 给定某年某月某日,问这是这年的第多少天?2. 已知某年的1月1号是星期几,求给定的某年某月某日是星期几?
其实这类问题的共同点在于它们都需要考虑闰年问题,大月小月问题;首先我们解决闰年问题,根据闰年的定义定义如下宏来判断某年是否是闰年:#define IS_LEAP(X) (((X) % 400 == 0 || (X) % 100 != 0 && (X) % 4 == 0) ? 1 : 0)
在来看大月小月问题,可以定义如下二维数组,用day_count_of_month[0][12]表示润年情况下每月的天数,用day_count_of_month[1][12]表示非润年情况下每月的天数(这就是传说中的字典法了,就是根据提供的信息查表,类似于查字典,所以叫做字典法):int day_count_of_month[2][12] = {
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
};
上面这段代码解决了第一个问题,第二个问题可以转换为类似第一个问题的问题:先计算给定的某年某月某日到给定已知这天的总天数s=>s%7=>利用模运算结果来推算所求日期的星期情况即可。